Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Abstract The proposal of fault-tolerant quantum computations, which promise to dramatically improve the operation of quantum computers and to accelerate the development of the compact hardware for them, is based on topological quantum field theories, which rely on the existence in Nature of physical systems described by a Lagrangian containing a non-Abelian (NA) topological term. These are solid-state systems having two-dimensional electrons, which are coupled to magnetic-flux-quanta vortexes, forming complex particles, known as anyons. Topological quantum computing (TQC) operations thus represent a physical realization of the mathematical operations involving NA representations of a braid group B n , generated by a set of n localized anyons, which can be braided and fused using a “tweezer” and controlled by a detector. For most of the potential TQC material systems known so far, which are 2D-electron–gas semiconductor structure at high magnetic field and a variety of hybrid superconductor/topological-material heterostructures, the realization of anyon localization versus tweezing and detecting meets serious obstacles, chief among which are the necessity of using current control, i.e., mobile particles, of the TQC operations and high density electron puddles (containing thousands of electrons) to generate a single vortex. Here we demonstrate a novel system, in which these obstacles can be overcome, and in which vortexes are generated by a single electron. This is a ~ 150 nm size many electron InP/GaInP 2 self-organized quantum dot, in which molecules, consisting of a few localized anyons, are naturally formed and exist at zero external magnetic field. We used high-spatial-resolution scanning magneto-photoluminescence spectroscopy measurements of a set of the dots having five and six electrons, together with many-body quantum mechanical calculations to demonstrate spontaneous formation of the anyon magneto-electron particles ( e ν ) having fractional charge ν = n / k, where n = 1–4 and k = 3–15 are the number of electrons and vortexes, respectively, arranged in molecular structures having a built-in (internal) magnetic field of 6–12 T. Using direct imaging of the molecular configurations we observed fusion and braiding of e ν - anyons under photo-excitation and revealed the possibility of using charge sensing for their control. Our investigations show that InP/GaInP 2 anyon-molecule QDs, which have intrinsic transformations of localized e ν - anyons compatible with TQC operations and capable of being probed by charge sensing, are very promising for the realization of TQC.more » « less
- 
            The cerebellum is emerging as a powerful regulator of cognitive and affective processing and memory in both humans and animals and has been implicated in affective disorders. How the cerebellum supports affective function remains poorly understood. The short-latency (just a few milliseconds) functional connections that were identified between the cerebellum and amygdala—a structure crucial for the processing of emotion and valence—more than four decades ago raise the exciting, yet untested, possibility that a cerebellum-amygdala pathway communicates information important for emotion. The major hurdle in rigorously testing this possibility is the lack of knowledge about the anatomy and functional connectivity of this pathway. Our initial anatomical tracing studies in mice excluded the existence of a direct monosynaptic connection between the cerebellum and amygdala. Using transneuronal tracing techniques, we have identified a novel disynaptic circuit between the cerebellar output nuclei and the basolateral amygdala. This circuit recruits the understudied intralaminar thalamus as a node. Using ex vivo optophysiology and super-resolution microscopy, we provide the first evidence for the functionality of the pathway, thus offering a missing mechanistic link between the cerebellum and amygdala. This discovery provides a connectivity blueprint between the cerebellum and a key structure of the limbic system. As such, it is the requisite first step toward obtaining new knowledge about cerebellar function in emotion, thus fundamentally advancing understanding of the neurobiology of emotion, which is perturbed in mental and autism spectrum disorders.more » « less
- 
            null (Ed.)Peroxidase mimics of nanoscale materials as alternatives to natural peroxidases have found widespread uses in biomedicine. Among various types of peroxidase mimics, platinum-group metal (PGM) nanocrystals have drawn considerable attention in recent years due to their superior properties. Particularly, PGM nanocrystals display high catalytic efficiencies, allow for facile surface modifications, and possess excellent stabilities. This feature article summarizes our recent work on development of PGM nanocrystals as peroxidase mimics and exploration of their applications in in vitro diagnostics. We begin with a brief introduction to controlled synthesis of PGM nanocrystals in solution phase. We then elaborate on a variety of physicochemical parameters that can be carefully tuned to optimize the peroxidase-like properties of PGM nanocrystals. Then, we highlight the applications of PGM nanocrystals in different in vitro diagnostic platforms. We conclude this article with personal perspectives on future research directions in this emerging field, where challenges and opportunities are remarked.more » « less
- 
            Abstract Despite the f0(980) hadron having been discovered half a century ago, the question about its quark content has not been settled: it might be an ordinary quark-antiquark ($${{\rm{q}}}\overline{{{\rm{q}}}}$$ ) meson, a tetraquark ($${{\rm{q}}}\overline{{{\rm{q}}}}{{\rm{q}}}\overline{{{\rm{q}}}}$$ ) exotic state, a kaon-antikaon ($${{\rm{K}}}\overline{{{\rm{K}}}}$$ ) molecule, or a quark-antiquark-gluon ($${{\rm{q}}}\overline{{{\rm{q}}}}{{\rm{g}}}$$ ) hybrid. This paper reports strong evidence that the f0(980) state is an ordinary$${{\rm{q}}}\overline{{{\rm{q}}}}$$ meson, inferred from the scaling of elliptic anisotropies (v2) with the number of constituent quarks (nq), as empirically established using conventional hadrons in relativistic heavy ion collisions. The f0(980) state is reconstructed via its dominant decay channel f0(980) →π+π−, in proton-lead collisions recorded by the CMS experiment at the LHC, and itsv2is measured as a function of transverse momentum (pT). It is found that thenq= 2 ($${{\rm{q}}}\overline{{{\rm{q}}}}$$ state) hypothesis is favored overnq= 4 ($${{\rm{q}}}\overline{{{\rm{q}}}}{{\rm{q}}}\overline{{{\rm{q}}}}$$ or$${{\rm{K}}}\overline{{{\rm{K}}}}$$ states) by 7.7, 6.3, or 3.1 standard deviations in thepT< 10, 8, or 6 GeV/cranges, respectively, and overnq= 3 ($${{\rm{q}}}\overline{{{\rm{q}}}}{{\rm{g}}}$$ hybrid state) by 3.5 standard deviations in thepT< 8 GeV/crange. This result represents the first determination of the quark content of the f0(980) state, made possible by using a novel approach, and paves the way for similar studies of other exotic hadron candidates.more » « lessFree, publicly-accessible full text available December 1, 2026
- 
            Free, publicly-accessible full text available September 1, 2026
- 
            A search for flavor-changing neutral current interactions of the top quark ( ) and the Higgs boson ( ) is presented. The search is based on proton-proton collision data collected in 2016–2018 at a center-of-mass energy of 13 TeV with the CMS detector at the LHC, and corresponding to an integrated luminosity of . Events containing a pair of leptons with the same-sign electric charge and at least one jet are considered. The results are used to constrain the branching fraction ( ) of the top quark decaying to a Higgs boson and an up ( ) or charm ( ) quark. No significant excess above the estimated background was found. The observed (expected) upper limits at a 95% confidence level are found to be 0.072% (0.059%) for and 0.043% (0.062%) for . These results are combined with two other searches performed by the CMS Collaboration for flavor-changing neutral current interactions of top quarks and Higgs bosons in final states where the Higgs boson decays to either a pair of photons or a pair of bottom quarks. The resulting observed (expected) upper limits at the 95% confidence level are 0.019% (0.027%) for and 0.037% (0.035%) for .more » « lessFree, publicly-accessible full text available August 1, 2026
- 
            A measurement is presented of the cross section in proton-proton collisions for the production of two bosons and one boson. It is based on data recorded by the CMS experiment at the CERN LHC at center-of-mass energies and 13.6 TeV, corresponding to an integrated luminosity of . Events with four charged leptons (electrons or muons) in the final state are selected. Both nonresonant production and production, with the Higgs boson decaying into two bosons, are reported. For the first time, the two processes are measured separately in a simultaneous fit. Combining the two modes, signal strengths relative to the standard model (SM) predictions of and are measured for and 13.6 TeV, respectively. The observed (expected) significance for the triboson signal is 3.8 (2.5) standard deviations for , thus providing the first evidence for triboson production at this center-of-mass energy. Combining the two modes and the two center-of-mass energies, the inclusive signal strength relative to the SM prediction is measured to be , with an observed (expected) significance of 4.5 (5.0) standard deviations.more » « lessFree, publicly-accessible full text available August 1, 2026
- 
            A<sc>bstract</sc> Measurements of fiducial and total inclusive cross sections for W and Z boson production are presented in proton-proton collisions at$$ \sqrt{s} $$ = 5.02 and 13 TeV. Electron and muon decay modes (ℓ= e orμ) are studied in the data collected with the CMS detector in 2017, in dedicated runs with reduced instantaneous luminosity. The data sets correspond to integrated luminosities of 298 ± 6 pb−1at 5.02 TeV and 206 ± 5 pb−1at 13 TeV. Measured values of the products of the total inclusive cross sections and the branching fractions at 5.02 TeV areσ(pp→W + X)$$ \mathcal{B} $$ (W→ ℓν) = 7300±10 (stat)±60 (syst)±140 (lumi) pb, andσ(pp→Z+X)$$ \mathcal{B} $$ (Z→ ℓ+ℓ−) = 669±2 (stat)±6 (syst)±13 (lumi) pb for the dilepton invariant mass in the range of 60–120 GeV. The corresponding results at 13 TeV are 20480±10 (stat)±170 (syst)±470 (lumi) pb and 1952±4 (stat)±18 (syst)±45 (lumi) pb. The measured values agree with cross section calculations at next-to-next-to-leading-order in perturbative quantum chromodynamics. Fiducial and total inclusive cross sections, ratios of cross sections of W+and W−production as well as inclusive W and Z boson production, and ratios of these measurements at 5.02 and 13 TeV are reported.more » « lessFree, publicly-accessible full text available April 1, 2026
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
